
HttpClient

4.3

By https://andreiabohner.org

Install
$ composer require symfony/http-client

HttpClient is a
standalone package

use Symfony\Component\HttpClient\HttpClient;

$httpClient = HttpClient:: (, 6, 50);

$response = $httpClient-> ('GET', 'https://symfony.com/versions.json’,);

$statusCode = $response-> ;

$contentType = $response-> ;

$content = $response-> ;

$content = $response-> ;

create

request

[]

[]

getStatusCode()

getHeaders()['content-type'][0]

getContent()

toArray()

Using the HttpClient

default values

max pending
pushes
(optional)(only cURL)

HTTP method URL

max host
connections
(optional)

returns the status code
E.g.: 200

returns: ‘application/json’

Consume APIs in a snap!

returns:
["lts" => "3.4.28", “latest" => "4.2.9",
"dev" => "4.3.0-RC1", “2.0"=>"2.0.25", ...]

returns:
{"lts":"3.4.28","latest":"4.2.9","dev":"4.3.0-RC1",...}

Provides utilities to
consume APIs

HTTP/2 request

Request Options:
here you can define
options that apply only
to this request
(overrides any global option
defined by the
HTTPclient::) create

$httpClient = HttpClient:: ([=> '2.0']); create 'http_version'

To enable for HTTP requests:

Available when:

* libcurl >= 7.61 is used

* PHP >= 7.2.17 / 7.3.4

Pushed responses are put into a temporary cache and are used when a

subsequent request is triggered for the corresponding URLs.

Create Options:
options defined here are added to

all requests made by this client

Create the low-level HTTP
client that makes requests

code execution continues immediately,
it doesn't wait to receive the response

getting the response headers
waits until they arrive

getting the response contents will block the execution
until the full response contents are received
(use streaming responses for full async apps)

The request() method perform
all kinds of HTTP requests

HTTP/2 PUSH support

HTTP/2 will be used by default if:
* cURL-based transport used
* libcurl version is >= 7.36
* request using HTTPs protocol

use Symfony\Component\HttpClient\CurlHttpClient;
use Symfony\Component\HttpClient\NativeHttpClient;

// native PHP streams
$httpClient = new NativeHttpClient();

// cURL PHP extension
$httpClient = new CurlHttpClient();

HTTPClient supports
native PHP streams

and cURL

Explicitly selecting the transport

Only supported
when using cURL

HttpClient:: selects cURL transport if cURL PHP

extension is enabled and falls back to PHP streams otherwise.

create()

HttpClient

4.3

By https://andreiabohner.org

An array containing the username as first value, and optionally the password as the second one; or string

like username:password - enabling HTTP Basic authentication (RFC 7617).

A token enabling HTTP Bearer authorization (RFC 6750).

Associative array of query string values to merge with the request's URL.

Headers names provided as keys or as part of values.

You can use regular strings, closures, iterables and resources to upload data.

They'll be processed automatically when making the requests.

When uploading JSON payloads, use the option instead of . The given content will be JSON-encoded

automatically and the request will add the automatically too.

Any extra data to attach to the request (scalar, callable, object...) that

must be available via - not used internally.

The maximum number of redirects to follow; a value lower or equal to zero means redirects should not be followed;

"Authorization" and "Cookie" headers must not follow except for the initial host name.

If the number of redirects is higher than the configured value, you'll get a .

Defaults to the best supported version, typically 1.1 or 2.0.

The URI to resolve relative URLs, following rules in RFC 3986, section 2 .

Whether the content of the response should be buffered or not.

json body

'user_data'

Content-Type: application/json

$response->

RedirectionException

getInfo()

auth_basic

auth_bearer

query

headers

body

json

user_data

max_redirects

http_version

base_uri

buffer

Options for Create and Request

option default value definition and examples

$response = $httpClient-> ('GET', 'https://httpbin.org/get', [
 ' ' => [
 'token' => '...',
 'name' => '...',
],
]);

request
query

q
u

er
y

st
ri

n
g

 p
ar

am
s

null

null

[]

[]

‘'

null

null

20

null

null

true

au
th

en
ti

ca
ti

o
n

HTTP Basic authentication
with only the username

HTTP Basic authentication
with username and password

HTTP Bearer authentication
(also called token authentication)

Use the same authentication
for all requests

use a different HTTP
Basic authentication
only for this request

$httpClient = HttpClient:: ([
 ' ' => ['the-username'],

 ' ' => ['the-username', 'the-password'],

 ' ' => 'the-bearer-token',
]);

$response = $httpClient-> ('GET', 'https://...', [
 ' ' => ['the-username', 'the-password'],
]);

create

request

auth_basic

auth_basic

auth_bearer

auth_basic

these values are automatically
encoded before including
them in the URL

$httpClient = HttpClient:: ([=> [
 'User-Agent' => 'My Fancy App',
]]);

$response = $httpClient-> ('POST', 'https://...', [
 => [
 'Content-Type' => 'text/plain',
],
]);

create

request

'headers'

'headers'

header added to
all requests made
by this client

header only included in
this request and overrides
the value of the same
header if defined
globally by create()

$response = $httpClient-> ('POST', 'https://...', [
 => 'raw data',

 => ['parameter1' => 'value1', '...'],

 => function () {
 // ...
 },

 => fopen('/path/to/file', 'r'),
]);

request
 'body'

 'body'

'body'

 'body'

using a regular string
using an array
of parameters

using a closure to generate
the uploaded data

using a resource to
get the data from it

u
p

lo
ad

in
g

 d
at

a
se

tt
in

g
 H

T
T

P
 h

ea
d

er
s

$response = $httpClient-> ('POST', 'https://...', [
 => ['param1' => 'value1', '...'],
]);

request
 'json' js

o
n

 p
ay

lo
ad

Details about the response progress (e.g. display a progress bar) / abort a request throwing any exceptions.

A map of host to IP address that should replace DNS resolution.

Protect webhooks against calls to internal endpoints.

Get through an HTTP proxy. By default, the proxy-related env vars handled by cURL should be honored.

A comma separated list of hosts that do not require a proxy to be reached.

The inactivity timeout - defaults to ini_get('default_socket_timeout').

The interface or the local socket to bind to.

Require verification of SSL certificate used.

Location of Certificate Authority file on local filesystem which should be used with the verify_peer context option

to authenticate the identity of the remote peer.

If cafile is not specified or if the certificate is not found there, the directory pointed to by capath is searched for a

suitable certificate. capath must be a correctly hashed certificate directory.

Path to local certificate file on filesystem.

Path to local private key file on filesystem in case of separate files for certificate (local_cert) and private key.

Passphrase with which your local_cert file was encoded.

Sets the list of available ciphers.

Pin public keys of remote certificates. Aborts when the remote certificate digest doesn't match the specified hash.

If set to TRUE a peer_certificate_chain context option will be created containing the certificate chain.

Additional options that can be ignored if unsupported, unlike regular options

null

[]

null

null

null

0

true

true

null

null

null

null

null

null

null

false

[]

on_progress

resolve

proxy

no_proxy

timeout

bindto

verify_peer

verify_host

cafile

capath

local_cert

local_pk

passphrase

ciphers

peer_fingerprint

capture_peer_cert_chain

extra

option default value definition and examples

S
S

L
 /

ce
rt

if
ic

at
es

 (h
tt

p
s:

//
p

h
p

.n
et

/c
o

n
te

xt
.s

sl
)

HttpClient

4.3

By https://andreiabohner.org

Cookies

$url = 'https://releases.ubuntu.com/18.04.1/ubuntu-18.04.1-desktop-amd64.iso';
$response = $httpClient-> ('GET', $url, [

 ' ' => false,

 ' ' => function (int $dlNow, int $dlSize, array $info): void {
 // ...
 },
]);

request

buffer

on_progress

optional: if you don't want to
buffer the response in memory

optional: to display details
about the response progress

HTTPClient is stateless so it doesn't handle cookies automatically. You can:

- handle cookies yourself using the Cookie HTTP header

- use the BrowserKit component which provides this feature and integrates seamlessly with the HttpClient component

Caching Requests and Responses

use Symfony\Component\HttpClient\HttpClient;
use Symfony\Component\HttpClient\CachingHttpClient;
use Symfony\Component\HttpKernel\HttpCache\Store;

$store = new Store('/path/to/cache/storage/');
$client = HttpClient:: ();
$client = new CachingHttpClient($client, $store);

$response = $client-> ('GET', 'https://example.com/cacheable-resource');

create

request

The decorator allows caching responses and serving them from the local storage for next requests.

The implementation leverages the class under the hood so that the component needs to be installed in your app.

CachingHttpClient

 HttpCache HttpKernel

accepts a third argument
to set the options for
HttpCache

won't hit the network
if the resource is already
in the cache

PSR-18 compatible

HttpClient

4.3

By https://andreiabohner.org

Response

$response = $httpClient-> ('GET', 'https://...');

$statusCode = $response-> ;

$headers = $response-> ;

$content = $response-> ;

$httpInfo = $response-> ;

$startTime = $response-> ;

request

getStatusCode()

getHeaders()

getContent()

getInfo()

getInfo('start_time')

Response Methods

Streaming Responses

stream : get chunks of the response sequentially
instead of waiting for the entire response

$url = 'https://releases.ubuntu.com/18.04.1/ubuntu-18.04.1-desktop-amd64.iso';
$response = $httpClient-> ('GET', $url, [
 ' => false,
 => function (int $dlNow, int $dlSize, array $info): void {
 // ...
 },
]);

if (200 !== $response->) {
 throw new \Exception('...');
}

$fileHandler = fopen('/ubuntu.iso', 'w');

foreach ($httpClient-> ($response, 0.0) as $chunk) {
 fwrite($fileHandler, $chunk->);
}

request

stream

buffer'
'on_progress'

getStatusCode()

getContent()

Scoping Client

use Symfony\Component\HttpClient\HttpClient;
use Symfony\Component\HttpClient\ScopingHttpClient;

$client = HttpClient:: ();
$httpClient = new ScopingHttpClient($client, [
 'https://api\.github\.com/' => [
 'headers' => [
 'Accept' => 'application/vnd.github.v3+json',
 'Authorization' => 'token '.$githubToken,
],
 'base_uri' => 'https://api.github.com/',
],
],
 'https://api\.github\.com/'
);

create

HTTP client options that depend
on the URL of the request

E.g.:
$response->getInfo()'debug'

for full async apps

Responses are always asynchronous:
the call to the method returns immediately
instead of waiting to receive the responseThe response is

an object of type
ResponseInterface

$response->getInfo() Options

user_data

response_headers

debug

url

error

http_method

http_code

redirect_count

start_time

connect_time

redirect_time

starttransfer_time

total_time

namelookup_time

size_upload

size_download

primary_ip

primary_port

redirect_url

(optional) max number of seconds to
wait before yelding a timeout chunk

Info coming from
the transport layer

returns the HTTP status

code of the response

gets the HTTP headers as string[][]

with the header names lower-cased

gets the response

body as a string

gets info coming from

the transport layer

gets individual info

gets detailed
logs about the

HTTP transaction

 autoconfigure the HTTP client
based on the requested URL

the options defined as values
apply only to the URLs
matching the regular
expressions defined as key

the key is a regexp
which must match

the beginning of
the request URL

the (optional) 3rd
argument is the

regexp applied to
all relative URLs

(when using base_uri)

responses are lazy:
this code is executed as soon
as headers are received

get the response
contents in chunk

response chunks implement Symfony\Contracts\HttpClient\ChunkInterface

Supports synchronous and
asynchronous operations

is non-blocking:
it returns live
info about
the response

Symfony Framework Integration

HttpClient

4.3

By https://andreiabohner.org

use Symfony\Contracts\HttpClient\HttpClientInterface;

class SomeService
{
 private $httpClient;

 public function __construct(HttpClientInterface $httpClient)
 {
 $this->httpClient = $httpClient;
 }
}

Injecting the HTTP Client into Services

you can configure multiple clients with
different configurations and inject
them into your services

Use the http_client
key to configure the
default HTTP client
used in the app

config/packages/framework.yaml
framework:
 # ...
 http_client:
 max_host_connections: 10
 default_options:
 max_redirects: 7

Defining multiple
http_clients

config/packages/framework.yaml
framework:
 # ...
 http_client:
 scoped_clients:
 crawler.client:
 headers: { 'X-Powered-By': 'ACME App' }
 http_version: '1.0'
 some_api.client:
 max_redirects: 5

inject the HTTP client into any
service by type-hinting a constructor
argument with the HttpClientInterface

One HTTP client Multiple HTTP clients

you can choose the service
using any available method
in Symfony

Handling Exceptions
When the HTTP status code of the response is in the range (i.e.) your code is expected to handle it.

If you don't do that, the getHeaders() and getContent() methods throw an appropriate exception:

300-599 3xx, 4xx or 5xx

$response = $httpClient-> ('GET', 'https://httpbin.org/status/403');

// this code results in a Symfony\Component\HttpClient\Exception\ClientException
// because it doesn't check the status code of the response
$content = $response-> ;

$content = $response-> ;

request

getContent()

getContent(false)

E.g.: when using

autowiring will inject the some_api.client service

as type and name of an argument:

Each scoped client also defines a
corresponding named autowiring alias

Symfony\Contracts\HttpClient\HttpClientInterface $someApiClient

Dealing with Network Errors
Network errors (broken pipe, failed DNS resolution, etc.)
are thrown as instances of TransportExceptionInterface

Wrap calls to $client-> ()

but also calls to any methods of the

returned responses

request

because responses are
lazy so errors can
happen in any method,
(except $response->
that is non-blocking)

getInfo()

To catch errors

try {
 // both lines can potentially throw
 $response = $client-> (...);
 $headers = $response-> ;
 // ...
} catch (TransportExceptionInterface $e) {
 // ...
}

request
getHeaders()

foreach ($client-> ($responses) as $response => $chunk) {
 try {
 if ($chunk->isLast()) {
 // ... do something with $response
 }
 } catch (TransportExceptionInterface $e) {
 // ...
 }
}

stream

Multiplexing responses

Deal with errors for individual streams by catching TransportExceptionInterface

in the foreach loop

the response of this
request will be a
403 HTTP error

pass FALSE as the optional argument to
not throw an exception and return
instead the original response content
(even if it's an error message)

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5

